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Abstract The purpose of this study is to propose a new
technique for evaluating spasticity in the upper limbs
of hemiplegic patients. Each subject lay on a bed,
and his forearm was supported with a jig to measure
the elbow joint angle. The subject was instructed to
relax and not to resist the step-like load which was
applied to extend the elbow joint. The elbow joint
angle and electromyograms of the biceps muscle, tri-
ceps muscle and brachioradialis muscle were measured.
The step-like response was approximated with a math-
ematical model which consisted of elastic components
depending on both muscle activities and elbow joint
angle. The response of hemiplegic subjects were ap-
proximated well with the model. The torque gener-
ated by the elastic component was estimated. The
normalized elastic torque was approximated with a
dumped sinusoid by the least square method. The
time constant of the elastic torque showed significant
differences between the healthy subjects and the hemi-
plegic subjects and among the different grades of sub-
jects. These results suggest that the time constant of
the elastic torque can be a quantitative index of spas-
ticity.
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I. Introduction

The Ashworth scale is widely used as a grade of spastic-
ity. The measurement is simple, and no special equip-
ment is needed. The grade is based on a relationship
between range of motion and resistance force during ex-
tension/flexion of the joint. However, it is a qualitative
index and sometimes fluctuates depending on a doctor’s
experience. Several reports have given quantitative evalu-
ations of spasticity. Some have proposed range of motion
applying a constant load. While a decrease in range of
motion is one of characteristics of spasticity, it is not suf-
ficient to evaluate spasticity. Velocity and force have also
been measured under the various restriction of motion in
others reports. However, it is necessary to use kinematic
equipment for measurement under such special conditions
as isovelocity extension/flexion.
The purpose of this study is to propose a new technique

for evaluating spasticity quantitatively using the measure-
ment of step-like response and a mathematical model.

II. Method

A. Subjects and Experimental Setup
The subjects included two male healthy subjects and four
male hemiplegic subjects. All gave informed consent (Ta-
ble 1).
Fig. 1 shows a schematic illustration of the experimental

setup. Each subject lay on a bed with his forearm sup-
ported with a jig to measure the elbow joint angle. With
the gravitational force of a weight, his forearm was pulled

Table 1. Subjects and Ashworth scale
Subject Age Ashworth scale Load (kgf)

A 22 — 0.5, 1.0, 1.5
B 24 — 0.4, 0.5, 0.7
C 47 2 0.5, 1.0, 1.5
D 53 3 or 4 2.0, 2.5, 3.0
E 63 3 or 4 0.5, 1.0, 1.5
F 57 3 0.5, 1.0, 1.5

to extend the elbow joint. The subject was instructed to
relax and not to resist the external load. The initial el-
bow joint angle was about 100◦, and the forearm was sup-
ported by an experimenter, which released the forearm at
an arbitrary time.
Three different weights were used, which allowed obser-

vation of a sufficient amplitude of the step-like response
without causing full extension (Table 1). The measure-
ments were repeated three times for each weight. The
elbow joint angle was measured with a potentiometer.
For bipolar recording, electromyograms (EMG) were ob-
tained with Ag-AgCl surface electrodes, 10 mm in diame-
ter, taped to the skin 15 mm apart. EMGs were recorded
from the biceps muscle, triceps muscle and brachioradialis
muscle. EMG signals were full-wave rectified and then
smoothed with a second order low-pass filter (fc = 2.6
Hz) to obtain an integrated electromyogram (IEMG).
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EMG Amplifier
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Fig. 1. Schematic illustration of experimental setup.
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B. Mathematical Model
The equation of motion around the elbow joint is (1).

Iθ̈(t) + ηθ̇(t) + kθ(t) = f(t) (1)

where I is the inertia of the forearm and the jig, θ(t) is the
relative elbow joint angle, η is the viscous coefficient and
k is the elastic coefficients. f(t) is the torque generated
by the external load:

f(t) = m(g − a)r
= mgr − mr2θ̈ (2)

where r is the radius of the pulley, m is the weight, g is
the gravitational constant and a is the acceleration of the
weight. The relative elbow joint angle θ(t) is zero at the
onset of the extension.
Substituting (2) to (1), (3) is derived:

I ′θ̈(t) + ηθ̇(t) + kθ(t) = mgr (3)

where I ′ is I + mr2.
The inertia I ′, viscous coefficient η and elastic coeffi-

cient k were calculated by the least square method. The
relative elbow joint angle was estimated, using these cal-
culated values, by the Runge-Kutta method and was com-
pared with the observed elbow joint angle.
According to our pre-measurements for healthy sub-

jects, the linear equation of motion (1) did not approx-
imate the observed data. We modified the linear model as
shown in (4):

k = k0 + k1θ(t) (4)

The elastic coefficient k depends on the relative elbow joint
angle θ(t) in Model A.
In addition to the modification of (4), we assumed that

the elastic coefficients were promotional to muscle activi-
ties (IEMG) in (5). This is model B:

k = k0 + k1θ(t) + a1e1(t) + a2e2(t) + a3e3(t) (5)

where e1(t), e2(t) and e3(t) are IEMGs of the biceps
muscle, triceps muscle and brachioradialis muscle, respec-
tively.

C. Normalized Elastic Torque
The torque caused by the elastic component was evalu-
ated as follows. First, the elastic torque was calculated
by subtracting torques caused by the inertia and viscosity
from the total torque mgr. Then the elastic torque was
normalized by the total torque as shown in (6):

g(t) =
mgr − I ′θ̈(t)− ηθ̇(t)

mgr
(6)

where g(t) is the normalized elastic torque.
The normalized elastic torque was approximated with

a dumped sinusoid in (7):

g(t) = A exp(−t/τ) sin(2πf0t + φ) + 1.0 (7)

where A is the relative magnitude, τ is a time constant of
dumping, f0 is the natural frequency and φ is the phase.
Finally, the time constant and the natural frequency

were evaluated by the Student’s t-test and compared with
Ashworth scale.

III. Results

A. Model A
Fig. 2 shows an example of a step-like response of the el-
bow joint angle (Subject A). The elbow joint angle was
estimated with the Model A. The top panel (a) repre-
sents the elbow joint angle when the external load was 0.5
kgf. The solid red line is the estimated angle. The green
broken-dotted line represents the observed angle. The es-
timated curve fits the observed one well. The blue dotted
line represents the small residual.
The lower panel (b) represents the elbow joint angle

when the external load was 1.0 kgf. The elbow joint angle
was estimated well with the model A. The elbow joint
angle of Subject B was also estimated with Model A (not
shown).
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Fig. 2. Example of a step-like response of the elbow joint angle
(subject A). (a) External load was 0.5 kgf. (b) External load
was 1.0 kgf.

Fig. 3 shows the elbow joint angle of hemiplegic sub-
jects. The top panel (a) represents the elbow joint angle
of Subject E. The external load was 1.0 kgf. The observed
angle shows less oscillation than that of the healthy sub-
jects. The estimated angle was inconsistent with the ob-
served one.
The bottom panel (b) shows the angle of Subject F. The

external load was 1.0 kgf. The amplitude of the second
peak was smaller than that of a healthy subjects. This
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Fig. 3. Example of a step-like response of the elbow joint angle
of hemiplegic subjects. (a) Subject E. (b) Subject F.

estimated angle also was inconsistent with the observed
one.

B. Model B
Fig. 4 shows the elbow joint angle estimated with Model
B. The third panel (c) represents the elbow joint angle
estimated from the same data shown in Fig. 3 (a). The
elbow joint angles were estimated better with Model B
than with Model A.
The bottom panel (d) shows the angle estimated from

the same data shown in Fig. 3 (b). The estimated angles
provided better agreement with the observed ones than
those estimated with Model A.
The top panel (a) is the angle of Subject C. The sec-

ond panel (b) is the angle of Subject D. They were also
estimated well with Model B.

C. Normalized Elastic Torque
Fig. 5 represents the normalized elastic torque. The top
panel (a) shows that of Subject A. The black solid line
denotes the normalized elastic torque calculated by (6).
The red dotted line denotes the torque approximated by
(7). The elastic torque was approximated well.
The normalized elastic torque declined gradually and

converged with the total torque. The time constant was
1.76 s. The frequency was 0.89 Hz.
The bottom plane (b) shows the normalized elastic

torque of Subject E. The normalized elastic torque de-
creased more rapidly than that of Subject A did. The
time constant was 0.40 s. The frequency, 1.67 Hz, was
higher than that of Subject A.
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Fig. 4. Step-like response of the elbow joint angle of hemiplegic
patients. (a) subject C (1.0 kgf), (b) subject D (2.5 kgf), (c)
subject E (1.0 kgf), (d) subject F (1.0 kgf).

Table 2 represents the time constant τ and the natural
frequency f0 of the normalized elastic torque. The time
constants of the healthy subjects were lager than those of
hemiplegic subjects. Moreover, the higher Ashworth scale
was, the shorter time constant was. Table 3 shows the re-
sults of the Student’s t-test of time constants. There were
significant differences between the healthy subjects and
the hemiplegic subjects. There were no significant differ-
ences between the healthy subjects A and B or between
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Fig. 5. Normalized elastic torque of a healthy subject and a
hemiplegic patient. (a) subject A (1.0 kgf), (b) subject E (1.0
kgf)

same grade subjects D and E.
The natural frequency of the healthy subjects had a

tendency to be lower than those of the hemiplegic subjects,
although this tendency was not clear. Table 4 represents
the Student’s t-test of the natural frequency. There was a
significant difference between the healthy subjects A and
B.

Table 2. Time constant of normalized elastic torque.
Subject AS Time const. (s) Freq. (Hz)

A — 1.70± 0.49 0.88± 0.06
B — 1.89± 0.28 0.63± 0.03
C 2 1.10± 0.17 0.71± 0.12
D 3 or 4 0.44± 0.10 1.71± 0.12
E 3 or 4 0.45± 0.06 1.62± 0.05
F 3 0.81± 0.13 1.40± 0.14

Table 3. Student’s t-test of time constant.
A B C D E

A —
B ND —
C < 0.01 < 0.001 —
D < 0.001 < 0.001 < 0.001 —
E < 0.001 < 0.001 < 0.001 ND —
F < 0.005 < 0.001 < 0.001 < 0.001 < 0.001

IV. Discussion

A. Elastic Coefficient

The step-like response of the elbow joint was approxi-
mated well with Model B. However, it was impossible to

Table 4. Student’s t-test of natural frequency.
A B C D E

A —
B < 0.001 —
C < 0.05 < 0.05 —
D < 0.001 < 0.001 < 0.001 —
E < 0.001 < 0.001 < 0.001 < 0.05 —
F < 0.005 < 0.001 < 0.001 < 0.001 < 0.005

separate the IEMG-dependent elasticity (a1, a2 and a3)
and the independent ones (k0 and k1 ) for evaluation of
elastic characteristics. IEMGs of the healthy subjects had
almost constant values close to zero, indicating that the
constant elasticity was distributed to both k0 and IEMG-
dependent elasticity a1, a2 and a3 with an unknown ratio.
IEMGs of the hemiplegic subjects increased during ex-

tension of their forearms. However, the amplitude of some
IEMGs did not show large changes. The activated mus-
cle differed among the subjects. The activation pattern
of each muscles related to those of other muscles, the el-
bow joint angle, angular velocity and so on. It is hard
to assume the linear independence of the muscle activa-
tion. Therefore, the elastic coefficients were not evaluated
directly in this study.

B. Time Constant of Normalized Elastic Torque
Considering a short time period, we can presume that the
elastic coefficient k is a constant value. On this presump-
tion, (3) is a linear second order equation and one of the
solution θ(t) is (8):

θ(t) = z

{
1− 1√

1− ζ2
e−ζω0t sin(

√
1− ζ2ω0t + φ)

}

tanφ =

√
1− ζ2

ζ
(8)

ω0 =

√
k

I ′
, ζ =

η

2
√

kI ′
, z =

mgr

k

The normalized elastic torque is kθ(t)/mgr = θ(t)/z,
which is similar to (7). The time constant τ is 1/ζω0 =
2I ′/η, which is independent of k. However, we approx-
imated the normalized elastic torque with the dumped
sinusoid instead of directly calculating 2I ′/η because k is
not constant.

V. Conclusion

We proposed a new technique for modeling the step-like
response of hemiplegic subjects. The response was ap-
proximated with a model whose elastic coefficients depend
on the elbow joint angle and muscle activity. The normal-
ized elastic torque was estimated and approximated with a
dumped sinusoid. The time constant shows significant dif-
ferences between the healthy subjects and the hemiplegic
subjects and among the different grades of subjects. The
results suggest that the time constant can be a quantita-
tive index of spasticity.
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